Discrete and Continuous Optimization Methods for Self-Organization in Small Cell Networks Models and Algorithms

نویسنده

  • Furqan Ahmed
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Furqan Ahmed Name of the doctoral dissertation Discrete and Continuous Optimization Methods for Self-Organization in Small Cell Networks Publisher School of Electrical Engineering Unit Department of Communications and Networking Series Aalto University publication series DOCTORAL DISSERTATIONS 150/2016 Field of research Communications Engineering Manuscript submitted 4 December 2015 Date of the defence 25 August 2016 Permission to publish granted (date) 17 June 2016 Language English Monograph Article dissertation Essay dissertation Abstract Self-organization is discussed in terms of distributed computational methods and algorithms for resource allocation in cellular networks. In order to develop algorithms for different selforganization problems pertinent to small cell networks (SCN), a number of concepts from discrete and continuous optimization theory are employed. Self-organized resource allocation problems such as physical cell identifier (PCI) assignment and primary component carrier selection are formulated as discrete optimization problems. Distributed graph coloring and constraint satisfaction algorithms are used to solve these problems. The PCI assignment is also discussed for multi-operator heterogeneous networks. Furthermore, different variants of simulated annealing are proposed for solving a graph coloring formulation of the orthogonal resource allocation problem. In the continuous optimization domain, a network utility maximization approach is considered for solving different resource allocation problems. Network synchronization is addressed using greedy and gradient search algorithms. Primal and dual decomposition are discussed for transmit power and scheduling weight optimizations, under a network-wide power constraint. Joint optimization over transmit powers and multi-user scheduling weights is considered in a multi-carrier SCN, for both maximum rate and proportional-fair rate utilities. This formulation is extended for multiple-input multiple-output (MIMO) SCNs, where apart from transmit powers and multi-user scheduling weights, the transmit precoders are also optimized, for a generic alpha-fair utility function. Optimization of network resources over multiple degrees of freedom is particularly effective in reducing mutual interference, leading to significant gains in network utility. Finally, an alternate formulation of transmit power allocation is considered, in which the network transmit power is minimized subject to the data rate constraints of users. Thus, network resource allocation algorithms inspired by optimization theory constitute an effective approach for self-organization in contemporary as well as future cellular networks.Self-organization is discussed in terms of distributed computational methods and algorithms for resource allocation in cellular networks. In order to develop algorithms for different selforganization problems pertinent to small cell networks (SCN), a number of concepts from discrete and continuous optimization theory are employed. Self-organized resource allocation problems such as physical cell identifier (PCI) assignment and primary component carrier selection are formulated as discrete optimization problems. Distributed graph coloring and constraint satisfaction algorithms are used to solve these problems. The PCI assignment is also discussed for multi-operator heterogeneous networks. Furthermore, different variants of simulated annealing are proposed for solving a graph coloring formulation of the orthogonal resource allocation problem. In the continuous optimization domain, a network utility maximization approach is considered for solving different resource allocation problems. Network synchronization is addressed using greedy and gradient search algorithms. Primal and dual decomposition are discussed for transmit power and scheduling weight optimizations, under a network-wide power constraint. Joint optimization over transmit powers and multi-user scheduling weights is considered in a multi-carrier SCN, for both maximum rate and proportional-fair rate utilities. This formulation is extended for multiple-input multiple-output (MIMO) SCNs, where apart from transmit powers and multi-user scheduling weights, the transmit precoders are also optimized, for a generic alpha-fair utility function. Optimization of network resources over multiple degrees of freedom is particularly effective in reducing mutual interference, leading to significant gains in network utility. Finally, an alternate formulation of transmit power allocation is considered, in which the network transmit power is minimized subject to the data rate constraints of users. Thus, network resource allocation algorithms inspired by optimization theory constitute an effective approach for self-organization in contemporary as well as future cellular networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERFORMANCE OF DIFFERENT ANT-BASED ALGORITHMS FOR OPTIMIZATION OF MIXED VARIABLE DOMAIN IN CIVIL ENGINEERING DESIGNS

Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as poten...

متن کامل

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

متن کامل

Modified particle swarm optimization algorithm to solve location problems on urban transportation networks (Case study: Locating traffic police kiosks)

Nowadays, traffic congestion is a big problem in metropolises all around the world. Traffic problems rise with the rise of population and slow growth of urban transportation systems. Car accidents or population concentration in particular places due to urban events can cause traffic congestions. Such traffic problems require the direct involvement of the traffic police, and it is urgent for the...

متن کامل

DISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM

Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...

متن کامل

DISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION METHODS FOR TRUSS STRUCTURES USING THE HARMONY SEARCH ALGORITHM

Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016